Monatshefte für Chemie 108, 443-449 (1977)

# Monatshefte für Chemie

© by Springer-Verlag 1977

## Die Kristallstruktur der Verbindung Cd<sub>2</sub>Ge<sub>7</sub>O<sub>16</sub>

### Von

Edmund Plattner und Horst Völlenkle

Institut für Mineralogie, Kristallographie und Strukturchemie, Technische Universität Wien, Österreich

Mit 1 Abbildung

(Eingegangen am 28. September 1976)

#### The Crystal Structure of the Compound Cd<sub>2</sub>Ge<sub>7</sub>O<sub>16</sub>

The crystal structure of  $Cd_2Ge_7O_{16}$  has been determined by means of three-dimensional single-crystal data. A final *R*-value of 6.3% was obtained by least squares refinement based on 230 observed reflexions. The tetragonal unit cell  $(P\bar{4}b2-D^{7}_{2d})$  with the lattice parameters a = 11.31 and c = 4.63 Å contains two formula units  $Cd_2Ge_7O_{16}$ . The compound is built up by [GeO<sub>4</sub>]-tetrahedra and [GeO<sub>6</sub>]-octahedra forming a three-dimensional framework with the Cd atoms located in the cavities. The average interatomic distances are found to be: Ge-O = 1.74 (tetrahedra), 1.89 (octahedra) and Cd-O = 2.36 Å.

Im Rahmen von kristallchemischen Untersuchungen an den wasserfreien Erdalkalitetragermanaten  $CaGe_4O_9$  (t),  $SrGe_4O_9$  und  $BaGe_4O_9$ wurden enge strukturelle Beziehungen zu dem Mineral Benitoit,  $BaTi[Si_3O_9]$ , einem Cyclosilicat, festgestellt<sup>1</sup>. Die Strukturaufklärung der Verbindung  $Cd_2Ge_7O_{16}^2$ , die bisher in der Literatur<sup>1, 3</sup> als "CdGe\_4O<sub>9</sub>" beschrieben wurde, ist unter dem Gesichtspunkt einer möglichen Strukturverwandtschaft mit diesen Germanaten von besonderem Interesse.

#### **Experimenteller** Teil

Als Ausgangssubstanzen zur Herstellung der Verbindung Cd<sub>2</sub>Ge<sub>7</sub>O<sub>16</sub> dienten CdCO<sub>3</sub> (reinst, Merck) und GeO<sub>2</sub> (99,999%, Quarzform, Loba-Chemie), die im molaren Verhältnis 1:4 bei 1000 °C durch Festkörperreaktion die gewünschte Verbindung liefern. Einkristalle konnten aus einem bei 1200 °C erschmolzenen und bei 800 °C getemperten Ansatz, der zusätzlich etwas Li<sub>2</sub>CO<sub>3</sub> (reinst, Merck) enthielt, gewonnen werden. Ein Kristall mit den Abmessungen  $0,05 \times 0,05 \times 0,18$  mm wurde für die Aufnahmen isoliert und auf einer Präzessions-Kamera um [001] justiert. Die Auswertung der Aufnahmen ergab folgende Gitterparameter für die tetragonale Elementarzelle:

a = 11,31 und c = 4,63 Å.

Die Elementarzelle enthält zwei Formeleinheiten  $Cd_2Ge_7O_{16}$  ( $\rho_{pykn} = 5,60$  und  $\rho_{r\delta} = 5,54 \text{ g} \cdot \text{cm}^{-3}$ ).

Zur Messung der Intensitäten wurden integrierte Weissenberg-Aufnahmen der nullten bis 4. Schichtlinie (CuK $\alpha$ -Strahlung, [001]-Achse) angefertigt. Die einzige gefundene Auslöschung, 0kl nur mit k = 2n, ist mit der beobachteten Laue-Symmetrie 4/mmm für die Raumgruppen P  $\overline{4}$  b2, P 4 bm und P 4/mbm charakteristisch. Insgesamt konnten 230 unabhängige Reflexe der asymmetrischen Einheit des reziproken Gitters erfaßt werden; das sind 72% der in diesem Bereich möglichen Reflexe. Die photometrisch bestimmten Intensitätswerte der Reflexe wurden nach einer für den verwendeten Röntgenfilm ermittelten Schwärzungskurve umgerechnet und mit Lorentz- und Polarisations- sowie Absorptionsfaktoren für zylindrische Kristalle korrigiert. Zur Charakterisierung der Verbindung Cd<sub>2</sub>Ger<sub>7</sub>O<sub>16</sub> ist in Tab. 1 die Auswertung eines Debyeogramms wiedergegeben.

#### Bestimmung und Verfeinerung der Kristallstruktur

Ausgangspunkt der strukturellen Überlegungen zur Erstellung eines Strukturmodells waren die von  $Wittmann^1$  auf Grund von kristallchemischen Untersuchungen festgestellten strukturellen Beziehungen zwischen den Erdalkalitetragermanaten CaGe<sub>4</sub>O<sub>9</sub> (t), SrGe<sub>4</sub>O<sub>9</sub> und BaGe<sub>4</sub>O<sub>9</sub> und dem Mineral Benitoit, BaTi[Si<sub>3</sub>O<sub>9</sub>].

Danach weisen die im Benitoit in Symmetrieebenen mit z = 1/4und 3/4 liegenden [Si<sub>3</sub>O<sub>9</sub>]-Baugruppen eine Verdrehung von etwa 35° gegeneinander auf, die in den Erdalkalitetragermanaten aufgehoben ist und die Halbierung der c-Achse zur Folge hat. Zugleich führt die niedrigere Eigensymmetrie der [Ge<sub>3</sub>O<sub>9</sub>]-Ringe in den Erdalkalitetragermanaten zu einer Vergrößerung der Zelle in der *a*-Richtung. Im Benitoit verläuft die Verknüpfung der [Si<sub>3</sub>O<sub>9</sub>]-Ringe über die oktaedrisch koordinierten Ti-Atome; in den Erdalkalitetragermanaten werden die analogen [Ge<sub>3</sub>O<sub>9</sub>]-Baugruppen über die Ecken von [GeO<sub>6</sub>]-Oktaedern verbunden. Die dabei auftretende eindimensional unendliche Verknüpfung von isolierten [GeO<sub>6</sub>]-Oktaedern über jeweils drei [GeO<sub>4</sub>]-Tetraeder besitzt eine charakteristische Periodizität von etwa 4,7 Å, die mit dem Wert der c-Achse von Cd<sub>2</sub>Ge<sub>7</sub>O<sub>16</sub> auffallend gut übereinstimmt (4,63 Å).

Es wurden daher Strukturmodelle mit der genannten Gruppierung erstellt, von denen das richtige Modell in der Raumgruppe  $P\bar{4}b2$  mit rein geometrisch abgeleiteten Parametern bereits einen *R*-Wert von 20% erreichte.

Eine dreidimensionale *Fourier*-Synthese führte zu einer genaueren Lokalisierung der einzelnen Atomlagen und die anschließende Rechnung mit den neuen Strukturfaktoren zu einem verbesserten R-Wert von 12,5%. Die Verfeinerung der Struktur mit Hilfe der Methode der klein-

| hkl | $\sin^2 \Theta \cdot 10^3$ ber. | $\sin^2 \Theta \cdot 10^3$ beob. | Int.<br>ber.                          | Int.<br>beob.  |
|-----|---------------------------------|----------------------------------|---------------------------------------|----------------|
| 110 | 0.9                             | 0.2                              | 96                                    | mat            |
| 110 | 9,0                             | 9,0                              | 20                                    | mst            |
| 200 | 10,0                            | 10,0                             | <i>э</i>                              | 8              |
| 210 | 23,2                            | 23,3                             | Z                                     | SS             |
| 111 | 37,0                            | 37,1                             | 20                                    | mst            |
| 201 | 46,3                            | 46,4                             | 26                                    | mst            |
| 211 | 51,0                            | 51,0                             | 13                                    | m              |
| 320 | 60,4                            | 60,6                             | 3                                     | s              |
| 221 | 64,9                            | 65,2                             | 4                                     | s              |
| 311 | 74,2                            | 719                              | ן100                                  | eet            |
| 400 | 74,3∫                           | 14,2                             | 7 }                                   | 550            |
| 410 | 79,0                            | 79,3                             | 25                                    | $\mathbf{mst}$ |
| 330 | 83,6                            | 83,9                             | 21                                    | $\mathbf{mst}$ |
| 321 | 88,1                            | 88,4                             | 21                                    | $\mathbf{mst}$ |
| 420 | 92,9                            | 93,1                             | 3                                     | s              |
| 401 | 102,1                           | 102,3                            | 17                                    | m              |
| 411 | 106,7                           | 106,8                            | 4                                     | s              |
| 002 | 110,9)                          |                                  | 12)                                   |                |
| 331 | 111.3                           | 110,9                            | 5}                                    | m              |
| 421 | 120.6                           | 120.9                            | 5                                     | $\mathbf{ms}$  |
| 431 | 143.9                           | 144.2                            | 2                                     | SS             |
| 511 | 148.5)                          | ,_                               | 21                                    |                |
| 440 | 148,7                           | 148,7                            | $\begin{bmatrix} -\\ 3 \end{bmatrix}$ | $\mathbf{ms}$  |
| 521 | $162,5^{'}$                     | 162,8                            | $5^{'}$                               | $\mathbf{ms}$  |
| 600 | 167.3                           | 167.7                            | 5                                     | $\mathbf{ms}$  |
| 441 | 176,4                           | 177.0                            | 2                                     | ss             |
| 402 | 185.2                           | 185.2                            | 6                                     | $\mathbf{ms}$  |
| 412 | 189.9                           | 189.9                            | 15                                    | m              |
| 332 | 194.5)                          |                                  | 19)                                   |                |
| 601 | 195.0                           | 194,8                            | 3                                     | $\mathbf{mst}$ |
| 422 | 203.8                           | 204.0                            | 5                                     | ms             |
| 630 | 209.1                           | 209.6                            | 4                                     | s              |
| 621 | 213.6                           | 214.0                            | 15                                    | m              |

Tabelle 1. Auswertung einer Pulveraufnahme von  $Cd_2Ge_7O_{16}$  bis  $\sin^2 \Theta = 0.214$  (CuK $\alpha$ -Strahlung)

sten Quadrate unter Verwendung des Gewichtsschemas nach  $Hughes^4$  und Berücksichtigung isotroper Temperaturkoeffizienten für jede Atomlage reduzierte den *R*-Wert auf 6,3%.

Tab. 2 enthält die Atomparameter und die Temperaturkoeffizienten für  $Cd_2Ge_7O_{16}$ . Tab. 3 gibt die beobachteten und die berechneten Strukturamplituden wieder.

#### Diskussion der Kristallstruktur

Die Verbindung  $Cd_2Ge_7O_{16}$  stellt ein Gerüstgermanat dar, das aus  $[GeO_4]$ -Tetraedern und  $[GeO_6]$ -Oktaedern aufgebaut ist und als

Tabelle 2.AtomparameterundTemperaturkoeffizientenfür $Cd_2Ge_7O_{16}$ ;Werte in Klammern geben die Standardabweichungen der letzten Stellen an<br/>(Raumgruppe  $P\overline{4}b2-D_{2d}^7$ )

| Atom   | Punktlage | x         | y          | z          | В       |
|--------|-----------|-----------|------------|------------|---------|
| Cd     | 4 (g)     | 0,1624(4) | 0,6624 (4) | 0          | 1,7 (1) |
| Ge (1) | 2 (d)     | 0         | 0,5        | 0,5        | 0,9 (1) |
| Ge (2) | 4 (g)     | 0,3645(4) | 0,8645(4)  | 0          | 0,6(1)  |
| Ge (3) | 8 (i)     | 0,0707(2) | 0,1856(2)  | 0,5100(16) | 0,6(1)  |
| O (1)  | 8 (i)     | 0,003(2)  | 0,383(2)   | 0,744(6)   | 1,1(3)  |
| O(2)   | 8 (i)     | 0,034(2)  | 0,277(2)   | 0,288(5)   | 0,8(4)  |
| O (3)  | 8 (i)     | 0,174(2)  | 0,229(2)   | 0,769 (5)  | 0,8(3)  |
| O (4)  | 8 (i)     | 0,138(2)  | 0,062(2)   | 0,343 (6)  | 0,7(3)  |



Abb. 1. Darstellung der Kristallstruktur von Cd<sub>2</sub>Ge<sub>7</sub>O<sub>16</sub> als Polyedergerüst mit eingezeichneten Cd-Atomlagen

 $Cd_2[Ge_2^{[6]}(Ge_4^{[4]}O_{12})(Ge^{[4]}O_4)]$  formuliert werden kann. Die von sechs Sauerstoffatomen koordinierten Cd-Atome besetzen Lücken des Gerüstes (Abb. 1).

Aus dem dreidimensionalen  $[Ge_7O_{16}]$ -Bauverband kann in Richtung [001] ein kettenförmiges Strukturelement abgeleitet werden, das durch Wiederholung von einem  $[GeO_6]$ -Oktaeder und drei  $[GeO_4]$ -Tetraedern

| 16                 |
|--------------------|
| Cd2Ge7O1           |
| für                |
| Strukturamplituden |
| berechnete         |
| nnd                |
| Be obachtete       |
| Tabelle 3.         |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ьк⊥ <b>г</b> о    | 653 78 | 753 78  | 853 33 | 953 58  | 1053 1101   | 1153 26 | 663 118 1 | 863 44   | 963 54       | 10 6 3 32 | 773 86              | 873 35  | 10 7 3 52 | 883 67  | 404 78        | 6 0 4 126 1 | 114 64  | 214 34  | 4 1 4 124 1 | 7 1 4 126 1 | 8 1 4 41 | 914 40 | 1014 33 | 3 2 4 51 | 4 2 4 65 | 5 2 4 51     | 624 63         |                  |         | 434 43      | 63.4 69  | 7 3 4 105 1 | 934 53 | 10 3 4 59 | 4 4 4 95 | 7 4 4 85 | 944 64   | 554 84  | 754 49  |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------|--------|---------|-------------|---------|-----------|----------|--------------|-----------|---------------------|---------|-----------|---------|---------------|-------------|---------|---------|-------------|-------------|----------|--------|---------|----------|----------|--------------|----------------|------------------|---------|-------------|----------|-------------|--------|-----------|----------|----------|----------|---------|---------|-----------|
| 7         6         1         7         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 <th7< th=""> <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<></th7<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fo Fc             | 54 59  | 69 68   | 47 47  | 16 16   | 26 22       | 150 159 | 36 39     | 23 23    | 42 44        | 77 80     | 167 167             | 56 66   | 121 114   | 121 011 | 38 <b>4</b> 0 | 59 65       | 52 60   | 175 183 | 70 65       | 63 57       | 87 85    | 100 99 | 33 38   | 52 52    | 126 118  | 45 37        | 60 63 08       |                  |         | 21 34<br>16 | 16 88    | 65 64       | 85 78  | 45 42     | 31 30    | 62 55    | 64 59    | 68 16   | 68 66   | 11 CB     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h k 1             | 772    | 872     | 972    | 10 7 2  | 11 7 2      | 882     | 982       | 992      | 10 9 2       | 203       | <b>F</b> 0 <b>F</b> | 603     | 803       | 10 0 J  | 12 0 3        | 113         | 213     | 313     | 413         | 613         | 613      | E 1 01 | 12 1 3  | 223      | 323      | <b>4</b> 2 3 |                | <br>             |         | 10 2 3      | 1 3 3    | 433         | 733    | 5 2 6     | 10 3 3   | 6 4 3    | 543      | 643     | 843     |           |
| Fo         Fo<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r, r <sub>c</sub> | 33 35  | 186 185 | 42 35  | 160 157 | 104 94      | 48 46   | 55 54     | BO 81    | 52 61        | 47 40     | 123 114             | 98 86   | 98 86     | 76 76   | 100 99        | 35 35       | 272 300 | 63 58   | 31 32       | 91 85       | 118 117  | 50 47  | 80 77   | 61 61    | 39 42    | 175 173      | 54 FC          | 75 17<br>177 917 |         | 81 80       | 31 32    | 169 164     | 73 73  | 49 45     | 37 31    | 75 81    | 54 56    | 56 59   | 36 28   | 6.7 6.0   |
| To         To <thto< th="">         To         To         To<!--</td--><td>4 4</td><td>112</td><td>412</td><td>612</td><td>7 1 2</td><td>812</td><td>10 1 2</td><td>11 1 2</td><td>12 1 2</td><td>13 1 2</td><td>322</td><td>4 2 2</td><td>522</td><td>622</td><td>10 2 2</td><td>11 2 2</td><td>13 2 2</td><td>332</td><td>4 3 2</td><td>532</td><td>632</td><td>732</td><td>932</td><td>10 3 2</td><td>11 3 2</td><td>12 3 2</td><td>4 4 2</td><td>6 4 2</td><td></td><td></td><td>11 4 2</td><td>12 4 2</td><td>552</td><td>752</td><td>852</td><td>10 5 2</td><td>11 5 2</td><td>662</td><td>762</td><td>862</td><td>-</td></thto<> | 4 4               | 112    | 412     | 612    | 7 1 2   | 812         | 10 1 2  | 11 1 2    | 12 1 2   | 13 1 2       | 322       | 4 2 2               | 522     | 622       | 10 2 2  | 11 2 2        | 13 2 2      | 332     | 4 3 2   | 532         | 632         | 732      | 932    | 10 3 2  | 11 3 2   | 12 3 2   | 4 4 2        | 6 4 2          |                  |         | 11 4 2      | 12 4 2   | 552         | 752    | 852       | 10 5 2   | 11 5 2   | 662      | 762     | 862     | -         |
| Fo         Fo<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fo Fc             | 38 33  | 104 109 | 97 106 | 64 57   | 43 42       | 95 93   | 68 82     | 47 43    | 104 105      | 77 84     | 102 106             | 116 123 | 103 99    | 112 105 | 6E E <b>I</b> | 16 16       | 97 92   | 117 108 | 96 96       | 75 77       | 135 141  | 38 40  | 45 48   | 158 163  | 38 40    | 55 52        | 43 42<br>11 12 |                  |         | 64          | 46 51    | 54 59       | 76 74  | 46 47     | 60 60    | 40 32    | 45 50    | 160 163 | 148 155 |           |
| $\Gamma_0$ $\Gamma_a$ $\Lambda$ $\Lambda$ $\Gamma_a$ $\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 X 4             | 10 2 1 | 1321    | 1 5 5  | 1 6 4   | 631         | 731     | 931       | 10 3 1   | 13 3 1       | 1 + +     | 541                 | 641     | 841       | 1 7 6   | 1 4 1         | 13 4 1      | 551     | 651     | 751         | 951         | 10 5 1   | 12 5 1 | 13 5 1  | 661      | 861      | 961          | 1 9 01         | 1 2 7            | 871     | 1 7 01      | 171      | 12 7 1      | 881    | 181       | 166      | 1 6 01   | 202      | 402     | 602     | • • •     |
| 7         7         7         7         7         7         7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | یں<br>د           | 9 46   | 3 132   | 9 76   | 7 52    | <b>1</b> 58 | 1 39    | 5 51      | <b>1</b> | ę            | 69 6      | 4                   | 64      | 1 110     | 1 92    | 7             | 5 173       | 8 38    | 0 65    | 7 65        | 1 153       | 3 192    | 3 123  | 1 144   | 5 137    | 5 5      | 13/          | 276            | 69               | 20      | 611 1       | 46       | 111 /       | 49     | 67        | 75       | 138      | 78       | 95      | 197     | 157       |
| 7         7         7         7           132         42         1         1         2           133         5         1         2         2           134         5         5         5         5           135         5         5         5         5           134         5         5         5         5           139         190         190         190         190           139         207         5         5         5           139         207         5         5         5           14         203         5         5         5         5           137         5         5         5         5         5           144         113         105         5         5         5           144         113         105         11         105         11           155         11         105         11         105         11           156         200         11         11         105         11           156         200         11         105         11         10           157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н к 1 – н         | 340    | 550 13  | 750 7  | 850 4   | 150 5       | 350 3   | 760 5     | 860 5    | <b>1</b> 096 | 0 6 0     | 160 🐇               | 260 6   | 770 10    | 870 9.  | 170 4         | 8 8 0 16    | 180     | 0 6 6   | .9 060      | 201 13      | 101 18   | 601 11 | 801 15  | 14:      | 101      |              | 1 1 52 a       | 4 1 1 8          | 5 1 1 5 | 9 1.1 124   | 6 L L SC | 11 110      | 211 50 | 411 70    | 221 74   | 321 146  | 4 Z 1 87 | 521 82  | 521 195 | 7 2 1 5 5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۳.<br>۳           | 1      | 142     | 200    | 56      | 50 1        | 76 1    | 61        | 28       | 207          | 34 1      | 1 061               | 51 1    | 11        | 51      | 49 1          | 56          | 62 1    | 48      | 23 1        | 63          | 77       | 63     | Q 1     | 1 2      | 38 J     | 6            | 1              | 20               | 36      | 48          | 37       | -T          | 80 1   | 19 1      | 65       | 51       | • 1      | 58      |         | 26        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °.                | 32     | 061     | 192    | 9       | 53          | 87      | 51        | 69       | 184          | 6E        | 198                 | 41      | 83        | 47      | 2             | 5           | 60      | 51      | Ħ           | 65          | 75       | 2      | 5       |          | 7        |              | 9              | 239 2            | 37      | 49          | 145 1    | 196 2       | 14     | 121 1     | 69       | 140 1    | Ş        | 57      | 136 1   | 128 1     |

## Die Kristallstruktur der Verbindung Cd<sub>2</sub>Ge<sub>7</sub>O<sub>16</sub>

447

entsteht und die Formel  $[Ge^{[6]}(Ge^{[4]}O_4)_3]$  aufweist. Die Verknüpfung von zwei derartigen kettenförmigen Strukturelementen über ein gemeinsames  $[GeO_4]$ -Tetraeder pro Periode führt zu einem umfassenderen

Tabelle 4. Interatomare Abstände (in Å) und Winkel (in Grad) für  $Cd_2Ge_7O_{16}$ ; die Standardabweichung für die Abstände beträgt 0,02 Å, für die Winkel etwa 0,9°

| [Ge $(1) - O_4$ ]-T         | etraeder | r            |                      |       |              |
|-----------------------------|----------|--------------|----------------------|-------|--------------|
| Ge (1)-0 (1)                | 1,74     | $(4 \times)$ | O (1)Ge (1)-O (1)    | 117,0 | $(2 \times)$ |
|                             | ,        | · · ·        |                      | 112,7 | $(2\times)$  |
|                             |          |              |                      | 99,2  | $(2\times)$  |
| [Ge (2)-O <sub>6</sub> ]-O  | ktaeder  |              |                      |       |              |
| Ge (2)—O (1)                | 1,92     | (2 	imes)    | O (1)Ge (2)-O (1)    | 102,4 |              |
| -O (2)                      | 1,85     | $(2\times)$  |                      | 85,9  | $(2 \times)$ |
| —O (3)                      | 1,92     | $(2 \times)$ | -0 (2)               | 89,7  | $(2\times)$  |
|                             |          |              | —O (3)               | 85, 4 | $(2 \times)$ |
| Mittelwert                  | 1,89     |              | —O (3)               | 172,2 | $(2\times)$  |
|                             |          |              | O(2)Ge $(2)$ O $(2)$ | 173,0 |              |
|                             |          |              | -O(3)                | 91,9  | $(2 \times)$ |
|                             |          |              | -0(3)                | 93,2  | $(2\times)$  |
|                             |          |              | O (3)-Ge (2)-O (3)   | 86,9  |              |
| [Ge (3)O₄]-T                | etraeder | •            |                      |       |              |
| Ge $(3)$ —O $(2)$           | 1,72     |              | O (2)Ge (3)-O (3)    | 121,0 |              |
| -0(3)                       | 1,75     |              | —O (4)               | 104,4 |              |
| O (4)                       | 1,77     |              | —O (4)               | 106,2 |              |
| O (4)                       | 1,73     |              | O (3)—Ge (3)—O (4)   | 103,5 |              |
|                             |          |              | —O (4)               | 113,5 |              |
| Mittelwert                  | 1,74     |              | O (4)—Ge (3)—O (4)   | 107,1 |              |
| [CdO <sub>6</sub> ]-Polyede | ər       |              |                      |       |              |
| Cd-0 (1)                    | 2,28     | (2	imes)     | O (1)—Cd—O (1)       | 84,3  |              |
| —O (2)                      | 2,55     | $(2\times)$  | O (2)                | 63,8  | $(2 \times)$ |
| O (3)                       | 2,26     | $(2 \times)$ | O (2)                | 79,0  | $(2 \times)$ |
|                             |          |              | —O (3)               | 120,0 | (2	imes)     |
| Mittelwert                  | 2,36     |              | —O (3)               | 134,7 | $(2 \times)$ |
|                             |          |              | O (2)CdO (2)         | 129,5 | • •          |
|                             |          |              | —O (3)               | 82,8  | (2	imes)     |
|                             |          |              | —O (3)               | 144,8 | $(2\times)$  |
|                             |          |              | O (3)CdO (3)         | 71,4  |              |

Bauverband einer Art Doppelkette, die durch die vierzähligen Drehinversionsachsen wiederholt wird und unter Ausbildung von  $[Ge_4^{[4]}O_{12}]$ -Ringen ein dreidimensionales Netzwerk bildet.

Die Beschreibung der Kristallstruktur der Verbindung  $Cd_2Ge_7O_{16}$ mit diesem kettenförmigen Strukturelement ermöglicht den einfachen Nachweis der strukturellen Beziehungen zu den Erdalkalitetragermanaten und dem Benitoit. In den Erdalkalitetragermanaten wird das kettenförmige Strukturelement [Ge<sup>[6]</sup>(Ge<sup>[4]</sup>O<sub>4</sub>)<sub>3</sub>] mit der Eigensymmetrie 32 direkt unter Ausbildung von tetraedrischen [Ge<sub>3</sub><sup>[4]</sup>O<sub>9</sub>]-Ringen vernetzt. Der Benitoit hingegen ist aus [Ti<sup>[6]</sup>(Si<sup>[4]</sup>O<sub>4</sub>)<sub>3</sub>]-Bauelementen mit der doppelten Periodizität (9.71 Å) und der Eigensymmetrie  $\overline{6}$  aufgebaut.

Die berechneten interatomaren Bindungslängen und Bindungswinkel sind in Tab. 4 zusammengestellt.

Die Mittelwerte der Bindungslängen (Tab. 4) stimmen mit den aus anderen Strukturen bekannten Werten gut überein, z. B.  $Ge^{[6]}-O = 1,887^5$ ,  $Ge^{[4]}-O = 1,746^5$  und Cd $-O = 2,346^6$ .

Die Rechenarbeiten wurden am EDV-Zentrum der Technischen Universität Wien durchgeführt, wofür wir bestens danken.

Der Oesterreichischen Nationalbank und der Hochschuljubiläumsstiftung der Stadt Wien sind wir für die finanzielle Unterstützung bei der Anschaffung wissenschaftlicher Geräte zu Dank verpflichtet.

#### Literatur

- <sup>1</sup> A. Wittmann, Fortschr. Miner. 43, 230 (1966).
- <sup>2</sup> E. Plattner, Dissertation, Technische Hochschule Wien, 1974.
- <sup>3</sup> H. Lange, Techn.-wiss. Abh. Osram Ges. 8, 33 (1963).
- <sup>4</sup> International Tables for X-Ray Crystallography, Vol. 2. Birmingham: The Kynoch Press. 1962.
- <sup>5</sup> H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 102, 361 (1971).
- <sup>6</sup> International Tables for X-Ray Crystallography, Vol. 3. Birmingham: The Kynoch Press. 1962.

Korrespondenz und Sonderdrucke:

Dr. E. Plattner Institut für Mineralogie, Kristallographie und Strukturchemie Technische Universität Wien Getreidemarkt 9 A-1060 Wien Österreich